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Sub-Cellular Technique for Finite-Difference
Time-Domain Method
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Abstract—The most frequently encountered problem with the
finite-difference time-domain (FDTD) method, for the analysis of
microstrip line and many other structures, is that the structure
generally has important structural features that are very small
as compared to the main body in at least one dimension. Thus, to
accurately analyze such structures, very small mesh is considered
which makes the analysis very expensive, time consuming, and
sometimes even impossible due to the computer limitations. In
this paper, a new sub-cellular technique has been proposed which
takes care of such problems as well as many other problems, such
as curved surfaces (in which interfaces are not parallel to one of
the coordinate planes and stair-step approximation is considered).

Index Terms—Electromagnetic, finite-difference time-domain
(FEDTD), mathematical technique, microstrip line, sub-cellular.

I. INTRODUCTION

T HE time-dependent Maxwell’s differential equations can
be represented by a set of difference equations and can

be solved numerically on a computer. This method of solving
the Maxwell’s differential equations is popularly known as
the finite-difference time-domain (FDTD) method and was
first proposed in [1] in two dimensions and later applied to
three dimensions in [2]–[11]. The FDTD method of solving
Maxwell’s equations is becoming more and more popular due
to its simplicity.

There are still some structures for which the application of
the FDTD method is not preferred—for example, the structures
in which some part has very small dimension in at least one
direction and, therefore, to analyze it accurately, very small
mesh has to be considered. Reducing the cell size throughout
the FDTD computational space is one method for dealing with
this type of situation, but it is computationally very expensive
and may not even be practical if computer resources, such as
memory and speed, are inadequate. Also, some structures have
a curvilinear boundary which needs stair-step approximation
and, thus, results in loss of accuracy. In such cases, accuracy
is proportional to the cell dimensions and usually requires
small cells if the curve is sharp, which again poses the same
problems of expensive computation, memory, and computer
limitations.

Few methods have been proposed so far [12]–[21], which
are being used extensively to overcome (to some extent)
such problems. Some of the methods [12], [15] use large
FDTD cells throughout the computation space but approximate
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the small geometry elements by modifying the equations for
the large cells that contain them. For example, a surface
impedance concept may be used to include material layers
thinner than the FDTD cells [12], [13]. Another variation
involves special equations for calculating the fields in the
vicinity of discontinuity thinner than the FDTD cell size [14],
[15]. Effects of lumped circuit elements which are contained
within one FDTD cell may also be included by modifying
the field equations for that cell. Development of this approach
often involves application of Maxwell’s equations in integral
rather than differential form, but the finite-difference equations
can be obtained from the integral form of Maxwell’s equation.
These methods are complex, as they need modification of the
equations.

One of the most commonly used methods to deal with
such geometries is the expansion technique [16], [17]. In
the expansion technique, the region of interest in the object
being analyzed is replaced with a finer grid. This method
allows realistic interior response predictions to be made. The
technique consists of making an initial computer run with
a model of the entire system. The electric fields, scattered
from the system and tangential to a sub-boundary, are stored
on disk from this calculation. The portion of the system
inside the sub-boundary is then subdivided into smaller cells
and the sub-boundary becomes the outer boundary for a
second calculation. The same incident field used for the first
calculation illuminates the subdivided portion of the system on
the second calculation. The same tangential-field response
as seen on the sub-boundary for the first run is imposed on
the outer boundary of the second run. The advantage of the
second run with smaller grid cells is that the missing portion
of the system appears to be present at this time—at least at
low frequencies. The drawback of this method is that it is very
slow as far as processing speed is concerned. The computer
takes a long time to store and then read the data from the disk
every time the mesh size is changed.

Some of the other methods include the sub-cell model [18]
and the contour path (CP) method [19]. The sub-cell model
is basically helpful in analyzing thin resistive films used in
waveguide components, substrate-mounted thin metallic or
dielectric films used in integrated circuitry, thin dielectric
windows or radomes used to enclose antennas, etc. In the
sub-cell model, the basic Cartesian grid arrangement of field
components at all space cells, except those special cells
containing the thin material sheet, are preserved. In special
cells, the electric-field component normal to the sheet is split
in two parts. The tangential components of the field do not
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need to be split as they are continuous across the boundary.
The equations for the special cells are updated from the
integral form of Maxwell’s equations. The line integrals are
performed assuming that the field is constant over segments of
the contour, and the surface integrals are performed assuming
the field as constant over the area of integration. Finally, the
time derivative is simply approximated by a finite difference.
The drawback of this method is that it has a very limited
validity range.

In the CP method [19], which is basically used for curvi-
linear boundaries, the basic Cartesian grid arrangement of
field components at all space cells, except those immediately
adjacent to the structure surface, are preserved. Space cells
adjacent to the structure surface are deformed to conform with
the surface locus. Slightly modified time-stepping expressions
for the field components adjacent to the surface are obtained
by applying the CP technique. The drawback of this method
is that it has a very restricted validity range.

Some other proposed methods are the variable step size
method (VSSM) [20] and the mesh refinement algorithm
(MRA) [21], which are similar to the proposed sub-cellular
technique in the sense that they also make use of dividing
the computational domain into two or more regions with
different cell size. The disadvantage in using these methods is
that both require calculation of extra second-order difference
equations at each coarse node on the boundary and also mem-
orize extra second-order differences—the required number of
memorizing fields increases with the increase in the reduction
ratio. The difference between the MRA and VSSM is that in
the VSSM, the second-order differences are calculated from
spatially interpolated field values, whereas in the MRA, the
second-order differences are calculated and then interpolated
in space.

In this paper, a new method has been proposed which is
much simpler compared to some of the methods explained
above, as no modifications in the field equations are re-
quired. This proposed method is much faster, as it helps in
reducing the number of cells and there is no requirement
of storing/reading the fields on/from the disk. According to
this method, the system is divided into two or more regions
and different cell sizes are considered in each region. The
fields in each region are calculated using the conventional
FDTD method where as fields on and around the boundary
(between the regions of different cell sizes) are calculated
using interpolation technique as explained below in the 15-
point procedure.

II. I MPLEMENTATION

The finite-difference system equations for electric () and
magnetic ( ) fields in ( , , )th cell can be written as

where

The subscript , , and represents the-, -, and -directed
fields and superscript represents the fields at theth time. ,
, , and are the electric conductivity, magnetic resistivity,

electric permittivity, and magnetic permeability constants of
the ( , , )th cell.

In the case of sub-cellular technique, the computational
domain is divided into two or more regions, with each re-
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Fig. 1. Implementation of sub-cellular technique in the FDTD method.

gion having a different cell size. Fields are calculated using
the finite-difference system equations. At some points, in
different time and space iterations, the fields are unknown
and are required for calculating other fields in the next
time iteration. Following 15-step iterative procedure has been
used for calculating these fields. The procedure has been
explained using Fig. 1, and here, only two regions have been
considered—the coarse-grid and fine-grid regions (three fine-
grid cells one coarse-grid cell case). In Fig. 1, and

represents the electric and magnetic fields where as
represents the time-stepping. Here, centered finite-difference
expressions for the space and time derivatives (using the
central-difference method) have been used, which are second-
order accurate in space and time. Also, the leapfrog time-
stepping process has been implemented as was suggested in
[1]. In Fig. 1, and represent the electric fields calculated
using interpolation and, similarly, is the magnetic field
calculated using interpolation as explained below:

1) update -fields on the coarse side;
2) update -fields on the fine side;
3) interpolate -field on the coarse side, shown asin

Fig. 1, using immediate -fields on both the sides as
shown below:

(1)

where is the -field on the coarse-grid side just
before the boundary and is the -field on the
boundary. The calculation of weighting coefficients of

and for the general case has been given in the
Appendix.

4) update -field on coarse side (just before the boundary),
and all the -fields on the fine side;

5) update -fields on the fine side and on the boundary;
6) update -fields on the coarse side;
7) update -fields on the fine side;
8) interpolate -fields, shown as and in Fig. 1, using

the immediate -fields on both sides as given below:

(2)

where is the -field on the coarse side just before
the boundary and is the -field on the fine side just
after the boundary. Again, the calculation of weighting
coefficients of and for the general case has been

Fig. 2. Mesh distribution shown for a conducting screen with a thin slot.

given in the Appendix. Similarly

where and are the -fields on the immediate
left and right side in the fine-grid area, respectively;

9) update -field on the boundary using the interpolated
field and first updated -field on the fine side;

10) update rest of -fields on the fine side using the
updated -fields;

11) update -fields on the fine side;
12) update -fields on the coarse side;
13) update -field on the boundary, between coarse and

fine mesh, using -fields just before the boundary and
the interpolated field;

14) update -fields on the fine side;
15) repeat step 3 onwards.

It is essential to check the stability condition in a finite-
difference method which guarantees that the numerical error
generated in one step of the calculation does not accumulate
and grow. In Yee’s algorithm [1], which has been followed
here, the stability condition is

where is the maximum phase velocity of the signal and
, , and are the dimensions of a coarse grid cell in

the -, -, and -directions, respectively. For the special case
of , the above equation becomes

The stability of the absorbing boundary conditions cannot
be achieved exactly as all the presently available absorbing
boundary conditions are imperfect for the numerical solution
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Fig. 3. Comparison of the sub-cellular technique and FDTD normal method for the magnitude of the gap electric fieldEx along an observation line
perpendicular to the screen and centered in the slot gap.

of wave equations which leads to some reflection. To minimize
the error introduced due to it, the computational domain should
be considered as large as possible and the time domain should
be considered as small as possible (which can be achieved by
stopping the computation as soon as the useful information
has been obtained).

III. RESULTS AND DISCUSSION

To check the validity of the sub-cellular FDTD technique,
a small region of space is selected. The space is then divided
into two sub-regions, one with bigger cells (coarse grid with
cell size ) and the other with smaller cells (fine grid
with cell size ). The space is terminated at both
ends with third-order Liao absorbing boundary condition [22].
At time , it is assumed that all the fields within the
numerical sampling region are identically zero. An excitation
pulse in the shape of a half-sine wave is assumed to enter
the sampling region. Propagation of the pulse is modeled
by the commencement of time-stepping, which is simply the
implementation of the finite-difference analog of the
equations. Time-stepping continues as the numerical analog
of the pulse strikes and gets completely absorbed by the
absorbing boundary at the end of the selected small region
of space. The movement of the wave is then observed, using
the data stored at different time-steps and animating the plots.
It is found that there is negligible reflection at the boundary
between the two different cell sizes, though it is not the
sufficientcondition, but anessentialcondition to support the
validity of this technique.

The validity and accuracy of this sub-cellular technique in
the FDTD method is further investigated and compared with
the normal FDTD method for a thin slot in a conducting screen
(see Fig. 2). Comparison has been done for the computed
electric-field distribution. The screen is assumed to be 0.1-
thick extending 0.5 to each side of the slot with a gap distance

of 0.025 . Broadside TE illumination has been considered. In
the case of sub-cellular technique, the coarse FDTD grid has
a cell size of 40 while the fine grid has a cell size of 120
to treat the slot as a three-cell gap. The coarse- and fine-grid
boundary lies at one big cell size (three small cell size) away
from the slot boundary on both the sides of the slot as shown
in Fig. 2. In the case of a conventional FDTD method, the cell
size of 120 has been considered throughout.

Fig. 3 shows the magnitude of the gap electric field
along an observation line perpendicular to the screen and cen-
tered in the slot gap. Results show that the sub-cellular tech-
nique has excellent agreement with the conventional FDTD
method. Computation time saved in the above case using this
sub-cellular technique is more than 30%, as compared with
the conventional FDTD method. In those cases, where the
important structural feature is very small compared to the main
body, the time saving can be more. As this technique does
not require any modifications in the field equations or any
other limitations, it can be applied to all those cases where the
normal FDTD method is applicable.

IV. CONCLUSION

A new sub-cellular technique has been proposed for the
analysis of structures which generally has important small
structural features compared to the main body, in at least
one dimension. This technique is very simple to implement in
the FDTD method and saves considerable computation time
by reducing the number of cells keeping the same accuracy.
This technique is applicable to all those cases where the
conventional FDTD method is applicable.

APPENDIX

Let coarse-grid cells fine-grid cells which will be
referred as the case. For the case, the general
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formula for (1) will be

where the weighting coefficients and can be written as

Similarly, for the case, the general formula for (2)
will be

where the weighting coefficientsand can be written as
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