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Sub-Cellular Technigue for Finite-Difference
Time-Domain Method

Sunil Kapoor,Member, IEEE

Abstract—The most frequently encountered problem with the the small geometry elements by modifying the equations for
finite-difference time-domain (FDTD) method, for the analysis of the |arge cells that contain them. For examp|e, a surface

microstrip line .and many other structures, is that the structure impedance concept may be used to include material layers
generally has important structural features that are very small

as compared to the main body in at least one dimension. Thus, to thinner than the FDTD cells [12], [13]. Another variation
accurately analyze such structures, very small mesh is considered involves special equations for calculating the fields in the
which makes the analysis very expensive, time consuming, andyvicinity of discontinuity thinner than the FDTD cell size [14],
sometimes even impossible due to the computer limitations. In [15]. Effects of lumped circuit elements which are contained

this paper, a new sub-cellular technique has been proposed which _ ... . . .
takes care of such problems as well as many other problems, suchWIthln one FDTD cell may also be included by modifying

as curved surfaces (in which interfaces are not parallel to one of the field equations for that cell. Development of this approach
the coordinate planes and stair-step approximation is considered). often involves application of Maxwell's equations in integral

Index Terms—Electromagnetic, finite-difference time-domain rather than (_jifferential form, but the finite-difference equati_ons

(FEDTD), mathematical technique, microstrip line, sub-cellular. ~ ¢an be obtained from the integral form of Maxwell's equation.
These methods are complex, as they need modification of the
equations.

One of the most commonly used methods to deal with
HE time-dependent Maxwell’s differential equations casuch geometries is the expansion technique [16], [17]. In
be represented by a set of difference equations and gag expansion technique, the region of interest in the object

be solved numerically on a computer. This method of solvirigeing analyzed is replaced with a finer grid. This method
the Maxwell’'s differential equations is popularly known asgilows realistic interior response predictions to be made. The
the finite-difference time-domain (FDTD) method and wagchnique consists of making an initial computer run with
first proposed in [1] in two dimensions and later applied t§ model of the entire system. The electric fields, scattered
three dimensions in [2]-[11]. The FDTD method of solvingrom the system and tangential to a sub-boundary, are stored
Maxwell's equations is becoming more and more popular d¢@ disk from this calculation. The portion of the system
to its simplicity. inside the sub-boundary is then subdivided into smaller cells

There are still some structures for which the application @4 the sub-boundary becomes the outer boundary for a

the FDTD method is not preferred—for example, the structurggcong calculation. The same incident field used for the first
in which some part has very small dimension in at least 0Rgcjation illuminates the subdivided portion of the system on
direction and, therefore, to analyze it accurately, very sma}la second calculation. The same tangenfidield response

mesh has to be considered. Reducing the cell size throughQutsaan on the sub-boundary for the first run is imposed on

the FDTD computational space is one method for dealing Wifje outer boundary of the second run. The advantage of the
this type of situation, but it is computationally very eXpensiVeqqqnq run with smaller grid cells is that the missing portion

and may not even be pr_act|cal if computer resources, SUChofllsthe system appears to be present at this time—at least at
memory and speed, are inadequate. Also, some structures r]nge

I . . S frequencies. The drawback of this method is that it is very
a curvilinear boundary which needs stair-step approximatiQ\ o< far as processing speed is concerned. The computer

gnd, thus,. results in loss of accuracy. In such cases, accuraies a long time to store and then read the data from the disk
is proportional to the cell dimensions and usually require

e§/ery time the mesh size is changed.

small celis if the curve is sharp, which again poses the SaM&ome of the other methods include the sub-cell model [18]

ﬁ;%?:;?:sm expensive computation, memory, and COmIOUtaerqd the contour path (CP) method [19]. The sub-cell model

Few methods have been proposed so far [12]-[21], whih baS|c_aIIy helpful in analyzing thin resistive f|_Ims used_ in
: ; waveguide components, substrate-mounted thin metallic or
are being used extensively to overcome (to some extent

such problems. Some of the methods [12], [15] use lar électnc films used in integrated circuitry, thin dielectric

FDTD cells throughout the computation space but approxima ndows or radomes u'sed to e'nclosg antennas, etc. In. the
sub-cell model, the basic Cartesian grid arrangement of field

components at all space cells, except those special cells
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need to be split as they are continuous across the boundary.
The equations for the special cells are updated from the
integral form of Maxwell's equations. The line integrals are
performed assuming that the field is constant over segments of
the contour, and the surface integrals are performed assuming
the field as constant over the area of integration. Finally, the
time derivative is simply approximated by a finite difference.
The drawback of this method is that it has a very limited
validity range.

In the CP method [19], which is basically used for curvi-
linear boundaries, the basic Cartesian grid arrangement of
field components at all space cells, except those immediately
adjacent to the structure surface, are preserved. Space cells
adjacent to the structure surface are deformed to conform with
the surface locus. Slightly modified time-stepping expressions
for the field components adjacent to the surface are obtained
by applying the CP technique. The drawback of this method
is that it has a very restricted validity range.

Some other proposed methods are the variable step size
method (VSSM) [20] and the mesh refinement algorithm  Hy(%; j, k)
(MRA) [21], which are similar to the proposed sub-cellular
technique in the sense that they also make use of dividing
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the computational domain into two or more regions with

different cell size. The disadvantage in using these methods is

that both require calculation of extra second-order difference

equations at each coarse node on the boundary and also mem- H._(i, j, k)|"+%°

|TL

orize extra second-order differences—the required number of + D.{E,(i, j + 0.5, k)"
memorizing fields increases with the increase in the reduction — Eui, j— 05, B)"
ratio. The difference between the MRA and VSSM is that in 6 -5, k)|
the VSSM, the second-order differences are calculated from + Ey(i — 0.5, j, k)"
spatially interpolated field values, whereas in the MRA, the —E,(i+0.5, 4, k)["}
second-order differences are calculated and then interpolated
in space. where

In this paper, a new method has been proposed which is LR YAY,
much simpler compared to some of the methods explained 1= 2 ik
above, as no modifications in the field equations are re- A= o zAt
quired. This proposed method is much faster, as it helps in 1+ 2:;’ '
reducing the number of cells and there is no requirement Atw’k
of storing/reading the fields on/from the disk. According to
this method, the system is divided into two or more regions B = €i,j, kO
and different cell sizes are considered in each region. The 1+ oi, j, kA

fields in each region are calculated using the conventional 2€4, 4,k

FDTD method where as fields on and around the boundary 1— pi, j, kKA
(between the regions of different cell sizes) are calculated C— 204, 5, k
using interpolation technique as explained below in the 15- o pi, 5, kAL
point procedure. 1+ 2t 4.k

At

II. |MPLEMENTATION D= NZJ—kAAt

The finite-difference system equations for electt) @nd 1+ %
04,k

magnetic {) fields in ¢, j, k)th cell can be written as
The subscript, ¥, andz represents the-, -, andz-directed
fields and superscript represents the fields at th¢h time. o,
p, €, andy are the electric conductivity, magnetic resistivity,
electric permittivity, and magnetic permeability constants of
the ¢, j, k)th cell.

In the case of sub-cellular technique, the computational
domain is divided into two or more regions, with each re-

E, (i, J, B)|"T = A EL (4, 4, B)I"
+ B.{H_(i, j + 0.5, k)|"t0?
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Fig. 1. Implementation of sub-cellular technique in the FDTD method.

gion having a different cell size. Fields are calculated using 0.5
the finite-difference system equations. At some points, in
different time and space iterations, the fields are unknown
and are required for calculating other fields in the next | | |
time iteration. Following 15-step iterative procedure has been I ! !
used for calculating these fields. The procedure has been
explained using Fig. 1, and here, only two regions have been
considered—the coarse-grid and fine-grid regions (three fine-
grid cells = one coarse-grid cell case). In Fig. E and I
H represents the electric and magnetic fields wheret asrig. 2. Mesh distribution shown for a conducting screen with a thin slot.
represents the time-stepping. Here, centered finite-difference
expressions for the space and time derivatives (using the
central-difference method) have been used, which are second-
order accurate in space and time. Also, the leapfrog time- e=05(En+ Eyp)
stepping process has been implemented as was suggested in
[1]. In Fig. 1, e and e represent the electric fields calculated
using interpolation and, similarlyh is the magnetic field
calculated using interpolation as explained below:

1) updateH-fields on the coarse side;

2) updateH-fields on the fine side;

3) interpolate H-field on the coarse side, shown asin

Fig. 1, using immediate{-fields on both the sides as
shown below:

0.12 ]

given in the Appendix. Similarly

where Ey; and E, are theE-fields on the immediate
left and right side in the fine-grid area, respectively;

9) updateH-field on the boundary using the interpolated
field and first updatedz-field on the fine side;

10) update rest ofH-fields on the fine side using the

updated E-fields;

11) updateE-fields on the fine side;

12) updateH -fields on the coarse side;

13) updateH-field on the boundary, between coarse and

_ fine mesh, using--fields just before the boundary and
h=04H.+06H, (2) the interpolated: field;

where H. is the H-field on the coarse-grid side just 14) updater -fields on the fine side;
before the boundary andi, is the H-field on the 15) repeat step 3 onwards.

boundary_ The calculation of We|ght|ng coefficients of It is essential to check the Stab”lty condition in a finite-
H, and H, for the general case has been given in tHdfference method which guarantees that the numerical error

Appendix. generated in one step of the calculation does not accumulate
4) updateE-field on coarse side (just before the boundarygnd grow. In Yee's algorithm [1], which has been followed
and all the E-fields on the fine side; ere, the stability condition is
5) updateH-f_leIds on the fine side _and on the boundary; Vi A < [(Az) ™2 + (Ay)~2 + (Az) =205
6) updateF-fields on the coarse side;
7) updateFE-fields on the fine side; wherew,,, IS the maximum phase velocity of the signal and

8) interpolateE-fields, shown as ande in Fig. 1, using Az, Ay, and Az are the dimensions of a coarse grid cell in
the immediateE-fields on both sides as given below: thex-, y-, andz-directions, respectively. For the special case
of Az = Ay = Az = Ah, the above equation becomes

VUmax * At S M

where E.. is the E-field on the coarse side just before V3

the boundary and’; is the £-field on the fine side just The stability of the absorbing boundary conditions cannot
after the boundary. Again, the calculation of weightingge achieved exactly as all the presently available absorbing
coefficients ofE>. and E; for the general case has beefoundary conditions are imperfect for the numerical solution

e=067E, +0.33E; )
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—— Sub-cellular technique = o= Normal FD-TD
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Fig. 3. Comparison of the sub-cellular technique and FDTD normal method for the magnitude of the gap electdg,. figlshg an observation line
perpendicular to the screen and centered in the slot gap.

of wave equations which leads to some reflection. To minimizd 0.025\. Broadside TE illumination has been considered. In
the error introduced due to it, the computational domain shoutte case of sub-cellular technique, the coarse FDTD grid has
be considered as large as possible and the time domain shautell size of /40 while the fine grid has a cell size 4f120

be considered as small as possible (which can be achieveddyreat the slot as a three-cell gap. The coarse- and fine-grid
stopping the computation as soon as the useful informatiboundary lies at one big cell size (three small cell size) away

has been obtained). from the slot boundary on both the sides of the slot as shown
in Fig. 2. In the case of a conventional FDTD method, the cell
IIl. RESULTS AND DISCUSSION size of A\/120 has been considered throughout.

Fig. 3 shows the magnitude of the gap electric fiéld

To check the validity of the sub-cellular FDTD technique o .

. . . . Iang an observation line perpendicular to the screen and cen-
a small region of space is selected. The space is then divide
t

into two sub-regions, one with bigger cells (coarse grid wi ered in the slot gap. Results show that the sub-cellular tech-

cell size= 1/20) and the other with smaller cells (fine gridnlque has excellent agreement with the conventional FDTD
with cell size = A\/60). The space is terminated at both

method. Computation time saved in the above case using this
- i i 0, i

ends with third-order Liao absorbing boundary condition [22 ub-cellular technique is more than 30%, as compared with

At time = 0, it is assumed that all the fields within the

he conventional FDTD method. In those cases, where the
numerical sampling region are identically zero. An excitatioh portant structural feature is very small compared to the main
pulse in the shape of a half-sine wave is assumed to en

y, the time saving can be more. As this technique does
the sampling region. Propagation of the pulse is mOdelgﬁ;[erreI?r:]Jiltr:tiggz irpggglgztgnslileré izealfllteri((j)szqg:stfsn svk?e:r:rt]r{e
by the commencement of time-stepping, which is simply the ' D€ app

. . L normal FDTD method is applicable.

implementation of the finite-difference analog of therl

equations. Time-stepping continues as the numerical analog
of the pulse strikes and gets completely absorbed by the V. CONCLUSION

absorbing boundary at the end of thg selected small regi.orh new sub-cellular technique has been proposed for the
of space. The movement of the wave is then observed, usifighlysis of structures which generally has important small
the data stored at different time-steps and animating the plaigyciural features compared to the main body, in at least
It is found that there_ is negligible_reflection at t_he_ boundaryne dimension. This technique is very simple to implement in
between the two different cell sizes, though it is not thiye FDTD method and saves considerable computation time
sufficientcondition, but anessentialcondition to support the by reducing the number of cells keeping the same accuracy.

validity of this technique. . ~ This technique is applicable to all those cases where the
The validity and accuracy of this sub-cellular technique igonyentional FDTD method is applicable.

the FDTD method is further investigated and compared with
the normal FDTD method for a thin slot in a conducting screen
(see Fig. 2). Comparison has been done for the computed
electric-field distribution. The screen is assumed to beX0.1- Let M coarse-grid cells= N fine-grid cells which will be
thick extending 0.5 to each side of the slot with a gap distanceeferred as théd : N case. For theM : N case, the general

APPENDIX
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formula for (1) will be
h=uwH.+vH,

where the weighting coefficients andv can be written as

(9]

[20]
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Similarly, for the M : N case, the general formula for (2)
will be

e=sE.+tE;

where the weighting coefficientsand¢ can be written as
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